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Three projects. Three ML problems.

1
Deep Learning for diagnosis from CT scans
 Canine cranial CTs
 DL to to diagnose Otitis Media (middle ear fluid)
 Small training set (~600 images)

2
Machine Learning augmented diagnostic tests
 Skin test for bTB has problems with sensitivity
 ML to predict herd breakdown risk and augment test results
 Complex correlated features, temporal evolution, missing data.

3
Impact of land management on disease transmission risk
 Predicting change in land use and affect on wildlife 

proximity to farms
 ML to predict wildlife species presence in land parcels
 Predictions based on sparse and biased observations
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 We attempted to leverage existing image 
records in the Hospital for Small Animals.

 Started with a relatively simple task:
← Identifying middle ear fluid.

 Canine cranial CTs
535 patients: 402 normal, 133 diseased.

  Tested a range of techniques for 
minimising the impact of a small training set

Deep Learning diagnostics on 
CT scans



 Convolutional Neural Networks with:

 Data Augmentation

 Static / Dynamic

 Class Weighting

 Oversampling

 Pre-trained models

 Feature extractor / Fine tuned

Deep Learning diagnostics on 
CT scans



Deep Learning diagnostics on 
CT scans

Model DA CW OS Accuracy Sensitivity Specificity AUC

Baseline 77.78% 0.583 0.972 0.87

FT_01 Y Y 75.00% 0.556 0.944 0.86

FT_02 St Y Y 80.56% 0.667 0.944 0.86

FT_03 Dy Y 81.94% 0.667 0.972 0.89

FT_04 Dy Y 79.17% 0.778 0.806 0.89

FT_05 Dy Y Y 84.72% 0.722 0.972 0.88

FE_01 Y Y 73.61% 0.556 0.917 0.81

FE_02 St Y Y 75.00% 0.500 1.000 0.79

FE_03 Dy Y 70.83% 0.444 0.972 0.76

FE_04 Dy Y Y 73.61% 0.472 1.000 0.81
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Machine learning for bTB diagnostics

©Tim Scrivener, Farmers Weekly

 Multiple potential risk factors integrated into a model for 
interpreting a skin test result.

 Predicts risk of breakdown from test/herd metadata. 
Used to augment test result.

 Also gives us an indication of “most important” risk factors.



 Problems to consider:
 Temporal data set (time series of test 

records)
 Missing data and left-censoring
 Highly correlated features

 Means to mitigate these:
 Temporal cross-validation
 Histogram Gradient Boosting Trees
 SHAP for feature importance©Tim Scrivener, Farmers Weekly
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 Results:
 Herd-level sensitivity increased 5.2%-points
 This means 240 extra breakdown herds 

caught by the model in one year (2020).
 Result is equivalent to a modelled increase in 

individual test sensitivity of 12%.
 SHAP really only confirms known bTB risk 

factors, but also provides indication these 
change over time.

 Bonus result:
 Change to focus on Specificity and we can 

catch around 5200 false positives in 2020.©Tim Scrivener, Farmers Weekly
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 All NBN Atlas observations for 
each deer species in Scotland 
from >2020.

E.g. 
Roe Deer
<-----------
>



 Presence observations mapped to 
Land Parcels

 Land parcel land use type
 CHESS-Met data (mean >2020)



 Build network of land parcel adjacency
 Neighbouring parcel:

 Land class
 Observations
 Presence of woodland



 Problem?
 Presence only from observations
 “Assumed-Absence” from no 

observation, but presence of other 
species.

 |Absence sample| = |Presence|
 Uniform Random Pseudo-Absence 

where insufficient A-As.

 Histogram Gradient Boosting Tree model
 Hyper-parameter randomised search 

with 10-fold CV.

Presence (T)
Assumed Absence (F)



Predicted:
Acc=77%
N=13,789
(aa=4,799)
(pa=8,990)



How can land management 
decisions affect disease?

 Area of woodland created only varies by around 3% 
between the low and high subsidy scenarios.

 But can allow up to a 57% increase in deer population.

 Overall 26%--35% increase in contact risk between cattle 
and deer, depending on the level of subsidy provided.

Modest increase in woodland area

Significant increase in deer/cattle contact



 Small image set training:
 Augmentation, weighting, oversampling, and fully fine 

tuned pre-trained models.
 Left(/right)-censoring, missing, or categorical:

 HGBT solves in a natural way.
 Highly correlated features:

 Use SHAP for feature importance.
 Species psudo-absence:

 Improved by other species observations.



 University of Edinburgh:
 Roslin Institute:

 Rowland Kao
 Aeron Sanchez

 R(D)SVS:
 Tobias Schwarz
 Richard Mellanby

 School of Informatics:
 Oisin Mac Aodha
 Zhixuan Zhao

 University of Glasgow:
 Nick Hanley
 Katherine Simpson

 UK Farmcare:
 Kate Bowen
 Vicki Stewart

 APHA:
 Graham Smith
 Oliver TearneThanks!
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