Machine learning models for diagnostics and risk analysis

Chris Banks, Aeron Sanchez, Rowland Kao (Roslin) Vicki Stewart, Kate Bowen (UK Farmcare)

UK Research and Innovation

THE UNIVERSITY of EDINBURGH The Royal (Dick) School of Veterinary Studies Department for Environment Food & Rural Affairs

1/13

31st October 2023

bTB Diagnostics

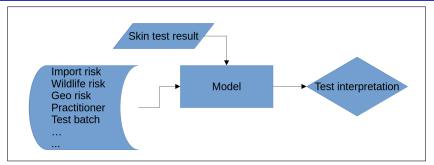
• Goal:

- Augment the results of the Single Intradermal Comparative Cervical Tuberculin (SICCT) test with surrounding epidemiological risk factors:
 - to improve herd-level test sensitivity,
 - thus improve early detection and reduce onward transmission.
- Outcomes:
 - Integration of a large number of risk factors, including:
 - Farm characteristics, movements, testing, vet practice, tuberculin batch, ...
 - Herd-level prediction of bTB breakdowns using a machine learning model.
 - Risk factor breakdown using feature importance
 - and deeper analysis.

Foundation

• Initial idea from:

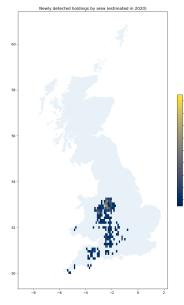
Article Open Access Published: 26 January 2021

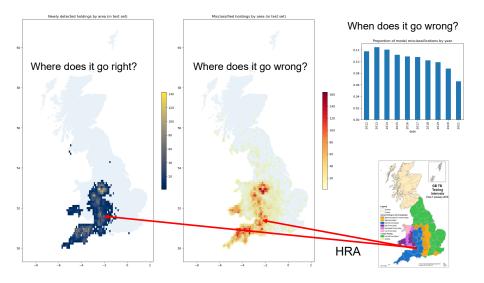

Using machine learning improves predictions of herdlevel bovine tuberculosis breakdowns in Great Britain

K. Stański 🖾, S. Lycett, T. Porphyre & B. M. de C. Bronsvoort

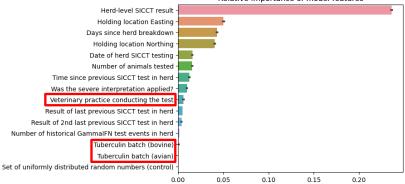
Scientific Reports 11, Article number: 2208 (2021) Cite this article

- Improved by:
 - Fewer (streamlined) risk factors, more historical data
 - Histogram-based Gradient Boosted Tree model:
 - Tuned and cross-validated model performance
 - Simplifying the treatment of missing data
 - Including new data from UK Farmcare (Vet practice and tuberculin batch).


Model and Data

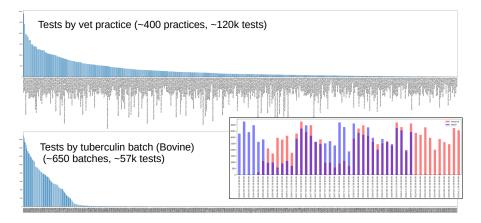


- Data extracted from APHA bTB surveillance database (SAM) and the Cattle Tracing System (CTS) database.
 - Every recorded SICCT test event between January 2012 and September 2021 (1.3m records)
 - Metadata on herd, location, movements, ...
- Data from UKFarmcare on vet and tuberculin batch for some tests:
 - 400 vet practices, covering 120k tests
 - 650 tuberculin batches, covering 57k tests


Results

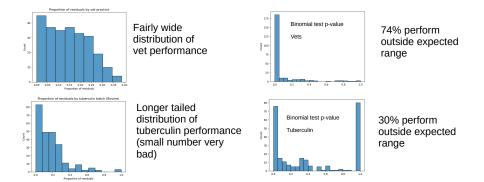
- Model goal is to predict a new breakdown within 90 days of testing.
- Balance of sensitivity vs. specificity can be tuned in the model.
- Here we take the same herd-level specificity as the skin test alone, maximising sensitivity.
- Increase in herd-level sensitivity 12%.
- Over one year (2020) we find around 400 negative herd-level tests, that went on to have breakdowns, but were identified as positive by the model.

Analysis - Risk factor importance

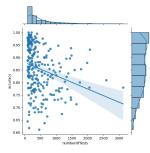


Relative importance of model features

- Risk factors ranked by permutation-based importance testing.
- Bar length shows accuracy reduction when factor removed from model.


Vet data – Coverage

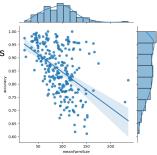
- Can we further explain risk factor importance of vet data?
- Data coverage may be reducing effectiveness:


Vet data – Vet/tuberculin accuracy

• What can we say about vet / tuberculin performance?

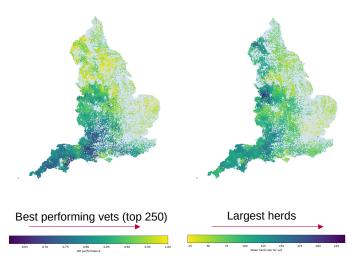
Vet data - Performance by practice type

• Which practices perform worse?


Size of vet practice by number of tests conducted has a weak correlation

r = -.27

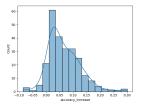
Mean size of herd dealt with by the vet is correlated

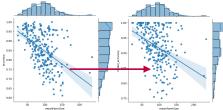

r = -.48

Vets that deal with larger herds perform worse

Vet data – Performance by practice type

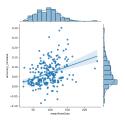
• Geographically?




What is the point of all this?

How does the model help?

Model augmented testing improves accuracy for most vets.


Some up to 30%:

Model reduces accuracy corelation with mean farm size from r=-.48 to r=-.38

> It increases performance with larger herds:

- UK Farmcare to conduct further analysis on vet results
- Possible extension to use skin test measurements instead of binary results
- How could this be used in the field?
 - App interface to model for vets to use at testing?
 - A guide to re-testing high-risk herds?
- Other situations: BVD, Johne's.