A Logic of Behaviour in Context

and the Continuous m-calculus

Chris Banks and lan Stark

Ifcs

\\\1\14

Laboratory for Foundations
of Computer Science

THE UNIVERSITY of EDINBURGH

- informatics

S,

INRIA Paris, July 2012

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

Introduction

In this talk | will

@ show how we are applying formal computational techniques to
systems biology, using

e process calculi
e modal/temporal logic
e model checking
@ present a language for modelling biochemical processes

@ and a logic for querying and classifying model behaviour in context.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 2/27

Continuous m-calculus

A name-passing, continuous time, continuous state-space process algebra
for modelling behaviour and variation in molecular systems.

Based on Milner's m-calculus and sharing an approach common to process
algebras for biomodelling (after Regev et al.), some features are
distinctive. For example, by comparison with the stochastic m-calculus:

@ ODEs are the primary mode of execution, not stochastic simulation
@ Continuous concentrations of chemicals replace discrete individuals

@ End-to-end channels are replaced by multiple competing names

@ Marek Kwiatkowski and lan Stark.
On Executable Models of Molecular Evolution. In Proc. 8th International Workshop on
Computational Systems Biology WCSB 2011, pp. 105-108.

@ Marek Kwiatkowski.

A Formal Computational Framework for the Study of Molecular Evolution
PhD Dissertation, University of Edinburgh, December 2010.

Banks & Stark (LFCS, Edinburgh) Behaviour in context

July 2012 3 /27

http://homepages.ed.ac.uk/stark/evocpi.html
http://mareklab.org/phd.html

Basics of ¢

cm has two levels of system description:

@ Species

o Individual molecules (proteins)
e Transition system semantics

@ Processes

o Bulk population (concentration)
o Differential equations

@ Process space is a real-valued vector space over species
e each point in this space is a possible state of the system
o the behaviour of a system with some initial values is a trajectory
through the space.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

Biomodelling in cm

For individual species, cm uses a modelling idiom based on that of Regev
and Shapiro:

Reagent-centric rather than rule-based
Individual species are represented by processes
Complexes are modelled by name restriction (vx)(A|B)

Interaction is modelled by communication between names

...but with competition between multiple alternatives.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

Names in cm

i

As in standard w-calculus, names indicate a
potential for interaction: for example, the
docking sites on an enzyme where other
molecules may attach.

»e

These sites may interact with many different k' / k"

other sites, to different degrees.

This variation is captured by an affinity network:
a graph setting out the interaction potential
between different names.

@0

kauto

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 6 /27

cm syntax

Species syntax

(Species) A,B == 0 | ZW,-.S,- | AIB | (vM)A
i=0
(Prefix) # == a(x;y) | 7@k
S ==D@E) | A

Process syntax

(Process) P,Q == c-A | P||Q
where ¢ € R is the species concentration

k
(Affinity Network) M ::= a labelled undirected graph: a — b

where a, b are sites and k € R is a reaction rate

v

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 7/27

cm example

Enzyme catalysed reaction

S+E=2ES—E+P

X
~

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

cm example

Enzyme catalysed reaction

S+E=2ES—E+P

E 2 (v{ 2")elu,r).x.E
S2s(u,r)(uS+r.P)

X
~

Banks & Stark (LFCS, Edinburgh)

Behaviour in context

July 2012

cm example

D{V Enzyme catalysed reaction

S+E=2ES—E+P

E 2 (v{ 2")elu,r).x.E
S=s(u,r).(uS+r.P)

ES = ({2 })(x.E|(u.S + r.P))

@€

X
~

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

cm example

Enzyme catalysed reaction

S+E=2ES—E+P

(1>
~—~

v{xZ;})elu, ry.x.E
(u,r)(u.S+r.P)

- @:-@

N2 c - S(s)llce - E(e)llcy - P()
Aff = {s — e}

X
~

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 8 /27

cm example

@@

R’
-

Syntax
Compiler
ODEs
Solver
Time Series
Plotter
Plots

Banks & Stark (LFCS, Edinburgh)

Behaviour in context July 2012

cm example

3

I—————
_— P—
S PR
Es—
;
C
5
2
©
b
c 06
: : : [
o
c
o
‘ ;
y
oV .
(] ——
N —
.

Banks & Stark (LFCS, Edinbur, Behaviour in context July 2012

cr features

Language reflects the structure of biochemical processes:

e Prefix actions — reaction sites
o Affinity network — complex reaction capabilities
e Restriction — internal capabilities of complexes

Compositional semantics — easier to construct large models from
components

Compilation to ODEs for standard analysis

Computationally less expensive for large models than other
approaches

e than e.g. approaches using stochastic simulation or exhaustive
state-space exploration

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

A logic for cm

We have a model with some dynamic behaviour. Now we wish to classify
this behaviour:
@ Requirements?
e Temporal logic
o Real valued constraints
o Contextual properties
o LTL(R)
e LTL is sufficient for deterministic processes
o LTL(R) for real valued constraints on species concentrations

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 10 / 27

A logic for cm

We have a model with some dynamic behaviour. Now we wish to classify
this behaviour:
@ Requirements?

e Temporal logic
o Real valued constraints
o Contextual properties

o LTL(R)
e LTL is sufficient for deterministic processes

o LTL(R) for real valued constraints on species concentrations

o Guarantee operator from spatial logic
e O Y
o PEogryY <= VQ.QE=¢ = P||QE

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

A logic for cm

We have a model with some dynamic behaviour. Now we wish to classify
this behaviour:
@ Requirements?

e Temporal logic
o Real valued constraints
o Contextual properties

o LTL(R)
e LTL is sufficient for deterministic processes
o LTL(R) for real valued constraints on species concentrations

o Guarantee operator from spatial logic
° P>y
° PE¢rY <= VQQE¢ = PllQREY
@ Context introduction operator:
e Qv
° PEQrY < QIIPEY

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

A logic of behaviour in context:

Atom | oA | oV | d=0 | ¢ |
dU | Frop | Gep | Q> o

(Formula) ¢,

Atom == T | L | Val BOp Val

Val == veR | [Al | Val AOp Val
BOp = > | < | > | <
AOp == + | — | x | =+

@ Where t is a sub-interval of [0, 00) € R.
@ Abbreviations U, F, G denote Uy), Fo,00), G[o,00) respectively
e and Uy, Fy, Gy denote Uy 1, Fo ., G[o 4 respectively.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 11 /27

Logic examples

F([A] = <)
o Eventually [A] > c.

G([A] > 0)
o We always have some A.

F24([A] > 0)
o Within 24 we have some A.

G[10,15)([A] < 5)
o Between times 10 and 15 we always have [A] < 5.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 12 /27

Logic examples

Q> F([A] = <)
o If we introduce Q then eventually [A] > c.

Q> F([A] > ¢) AG([A] < ©)
o If we introduce Q then [A] rises above ¢, whereas without Q it doesn't.

F(Q>F([A] < ¢))

o If we introduce Q at some point in time then [A] is eventually below c.

Go,51(Q > Fio([A] > ¢))

o If we introduce Q at any time between 0 and 5 then within 10 we get
at least c of A.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 13 /27

Logic semantics

For P, a cm process:

P E Atom <= Atom is a property of P

PEGAY — PE¢and PE

PE ¢ — PE

PE U b = Jto <t/ <to.((PY EY) A (Vi <t < t.PY F ¢))
PEQb>o — (Q|P)Eo

@ P! is the process reached from process P after time t.

@ @ is a cm process with any new global affinity network.

thb = —I—Ut(b
G:¢ = ~Fi—¢

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 14 /27

Model checking

@ A numerical ODE solver gives us a Trace of the form:

(to, &), (t1, 1), - -

@ A naive model checking algorithm is then easily expressed as a
functional program:

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

Naive model checker

check ::

check
check
check
check

check

check

(t:

(t:

(t:

(t:

(t:

solve ::

compose ::

proc ::

Trace — Formula +— Bool

ts) (atom) = valid atom t

ts) (@A Y) = (check (t:ts) ¢) AND (check (t:ts))
its) (o V) = (check (t:ts) ¢) OR (check (t:ts))
ts) (=) = NOT(check (t:ts) ¢)

ts) (AU(y, 1,19 if (t< tp) then check ts Uy ¥
else (t < t;) AND ((check (t:ts) %) OR

((check (t:ts) ¢) AND (check (ts) (PUyy %))

ts) (Q> @) check (solve (compose Q (proc (t:ts))))) ¢
Process +— Trace

Process > Process +— Process
Trace — Process

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 16 / 27

Improved model checking

@ The naive algorithm has complexity O(n") for trace length n and
depth f of nested temporal operators.

o We repeatedly re-compute sub-formulae along the trace,
o e.g. in G(F¢) if ¢ isn't true until the end of the trace we have cost n?.

@ To improve on this we can make use of the dynamic programming
approach used in:

@ Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.
Machine learning biochemical networks from temporal logic properties.
Transactions on Computational Systems Biology VI, 2006, pp. 68—94.

@ where we traverse the trace only once, evaluating all sub-formulae
simultaneously.

July 2012 17 / 27

Banks & Stark (LFCS, Edinburgh) Behaviour in context

Dynamic programming algorithm

@ By post-order depth-first traversal of the formula we obtain
sub-formulae ordered by dependency.

© Reverse the ordering of the trace.

© We traverse the reversed trace once, labelling each time-point with
each sub-formula in order if it holds, according to the following rules:

18 / 27

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

Dynamic programming algorithm

@ An atomic proposition holds if its constraint is satisfied.
@ ¢ A holds if the time-point is already labelled with both ¢ and .

@ —¢ holds if the time-point is not already labelled with ¢.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 19 / 27

Dynamic programming algorithm

(] ¢U[t0,tn]¢ hO|dS |f
e either the time is < t, and:

@ either the time-point is already labelled with ¥
@ or it is already labelled with ¢ and the previous time point was labelled

with ¢U[to,tn]w-
e or the time is < tp and the previous time point is labelled
W|th ¢U[to,tn]¢'

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 20 / 27

Dynamic programming algorithm

@ Q> ¢ holds if the following procedure returns true:

@ find the c process I of this time point and find Q||M,
@ solve Q|| and apply the algorithm to this new trace and ¢.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 21 /27

Hybrid algorithm

@ The dynamic programming algorithm avoids unnecessary
re-computation.

@ However we lose the ability to short-circuit the checking, e.g. stop
when we find a witness for F¢.

@ By using a hybrid of the two algorithms we can have the best of both.

@ The naive algorithm can be restructured as:

@ an outer recursion over the trace
e and an inner recursion over the sub-formulae.

@ Implementation in Haskell exploits any potential laziness and only
computes over as much of the trace as we need.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 22 /27

Calls to the solver

@ By far the greatest computational cost comes from solving ODEs.

@ The key to efficient model checking is reducing the number of calls
we have to make to the solver.

o Consider G(Q > ¢) — we must compute a new trace introducing Q at
every time point.
e Thankfully this is embarrassingly parallel.

@ Context introduction itself doesn't increase complexity, as we can
re-write, e.g.:
° (Qr)N(QeY) = Qr(dAY)
° Q> (Q'>¢) = (QlQ) ¢

o We have O(nd) where d is the depth of temporal operators separated
by context introductions — G(Q > (G¢)) has O(n?)

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 23 /27

@ We assume that the ODE solver gives us:

e a trace over sufficient time to verify the formula,
e a sufficiently accurate trace to verify the formula.

@ The first condition we can satisfy as our temporal modalities specify
the times over which we need to check (assuming a closed interval).

@ The second condition is harder — a comment about that later.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 24 /27

Tools

@ cm workbench — implementation in Haskell
e cr interactive interpreter
@ species transition system exploration
o ODE output
e ODE solvers

o internal GSL solvers: explicit (RKf45) / implicit (BSimp)
o external: interface to GNU Octave for LSODE
@ Jacobian computed symbolically by the tool.

graph plotting

logic and model checker (various algorithms)

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

Formula rewriting LTL algorithms (Rosu & Havelund)

Reduce calls to the numerical solver:
e solver is the bottleneck
o formula rewriting
e can some class of formulae be solved symbolically?

Parallelising calls to the solver.
@ Counterexample generation.

e Continued work on tool support / (G)UI.

@ How can we assume the trace is sufficient?
o exact real ODE solvers? (Edalat & Krznaric)

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012

Fin

@ Acknowledgements:

o lan Stark (supervisor)
o Marek Kwiatkowski (c)

@ Bibliography:

[3 Kwiatkowski, M., & Stark, .
The continuous m-calculus: A process algebra for biochemical modelling.
In Proc. Computational Methods in Systems Biology '08, LNCS 5307,
pp.103122. Springer-Verlag, 2008.

¥ Kwiatkowski, M.
A formal computational framework for the study of molecular evolution
Ph.D. Thesis, University of Edinburgh, 2010.

[3 Kwiatkowski, M., & Stark, .
On Executable Models of Molecular Evolution.
In Proc. WCSB'11, pp.105-108, 2011

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 27 / 27

