
A Logic of Behaviour in Context
and the Continuous π-calculus

Chris Banks and Ian Stark

INRIA Paris, July 2012

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 1 / 27

Introduction

In this talk I will

show how we are applying formal computational techniques to
systems biology, using

process calculi
modal/temporal logic
model checking

present a language for modelling biochemical processes

and a logic for querying and classifying model behaviour in context.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 2 / 27

Continuous π-calculus (cπ)

A name-passing, continuous time, continuous state-space process algebra
for modelling behaviour and variation in molecular systems.

Based on Milner’s π-calculus and sharing an approach common to process
algebras for biomodelling (after Regev et al.), some features are
distinctive. For example, by comparison with the stochastic π-calculus:

ODEs are the primary mode of execution, not stochastic simulation

Continuous concentrations of chemicals replace discrete individuals

End-to-end channels are replaced by multiple competing names

Marek Kwiatkowski and Ian Stark.
On Executable Models of Molecular Evolution. In Proc. 8th International Workshop on
Computational Systems Biology WCSB 2011, pp. 105–108.

Marek Kwiatkowski.
A Formal Computational Framework for the Study of Molecular Evolution
PhD Dissertation, University of Edinburgh, December 2010.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 3 / 27

http://homepages.ed.ac.uk/stark/evocpi.html
http://mareklab.org/phd.html

Basics of cπ

cπ has two levels of system description:

Species

Individual molecules (proteins)
Transition system semantics

Processes

Bulk population (concentration)
Differential equations

Process space is a real-valued vector space over species

each point in this space is a possible state of the system
the behaviour of a system with some initial values is a trajectory
through the space.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 4 / 27

Biomodelling in cπ

For individual species, cπ uses a modelling idiom based on that of Regev
and Shapiro:

Reagent-centric rather than rule-based

Individual species are represented by processes

Complexes are modelled by name restriction (νx)(A|B)

Interaction is modelled by communication between names

...but with competition between multiple alternatives.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 5 / 27

Names in cπ

As in standard π-calculus, names indicate a
potential for interaction: for example, the
docking sites on an enzyme where other
molecules may attach.

These sites may interact with many different
other sites, to different degrees.

This variation is captured by an affinity network:
a graph setting out the interaction potential
between different names.

x x

b c d

a

s

k k ′ k ′′

r

kauto

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 6 / 27

cπ syntax

Species syntax

(Species) A,B ::= 0 |
n∑

i=0

πi .Si | A|B | (νM)A

(Prefix) π ::= a(~x ;~y) | τ@k

S ::= D(~a) | A

Process syntax

(Process) P,Q ::= c · A | P||Q
where c ∈ R is the species concentration

(Affinity Network) M ::= a labelled undirected graph: a
k
− b

where a, b are sites and k ∈ R is a reaction rate

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 7 / 27

cπ example

Enzyme catalysed reaction

S + E � ES → E + P

E , (ν{x∠u
r })e〈u, r〉.x .E

S , s(u, r).(u.S + r .P)

P , 0

ES ≡ (ν{x∠u
r })(x .E |(u.S + r .P))

Π , cs · S(s)||ce · E (e)||cp · P()

Aff = {s − e}

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 8 / 27

cπ example

Enzyme catalysed reaction

S + E � ES → E + P

E , (ν{x∠u
r })e〈u, r〉.x .E

S , s(u, r).(u.S + r .P)

P , 0

ES ≡ (ν{x∠u
r })(x .E |(u.S + r .P))

Π , cs · S(s)||ce · E (e)||cp · P()

Aff = {s − e}

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 8 / 27

cπ example

Enzyme catalysed reaction

S + E � ES → E + P

E , (ν{x∠u
r })e〈u, r〉.x .E

S , s(u, r).(u.S + r .P)

P , 0

ES ≡ (ν{x∠u
r })(x .E |(u.S + r .P))

Π , cs · S(s)||ce · E (e)||cp · P()

Aff = {s − e}

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 8 / 27

cπ example

Enzyme catalysed reaction

S + E � ES → E + P

E , (ν{x∠u
r })e〈u, r〉.x .E

S , s(u, r).(u.S + r .P)

P , 0

ES ≡ (ν{x∠u
r })(x .E |(u.S + r .P))

Π , cs · S(s)||ce · E (e)||cp · P()

Aff = {s − e}

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 8 / 27

cπ example

Syntax

ODEs

Time Series

Plots

Compiler

Solver

Plotter

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 8 / 27

cπ example

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

C
o
n
ce
n
tr
a
ti
o
n

Time

P
S

ES

E

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 8 / 27

cπ features

Language reflects the structure of biochemical processes:

Prefix actions – reaction sites
Affinity network – complex reaction capabilities
Restriction – internal capabilities of complexes

Compositional semantics – easier to construct large models from
components

Compilation to ODEs for standard analysis

Computationally less expensive for large models than other
approaches

than e.g. approaches using stochastic simulation or exhaustive
state-space exploration

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 9 / 27

A logic for cπ

We have a model with some dynamic behaviour. Now we wish to classify
this behaviour:

Requirements?

Temporal logic
Real valued constraints
Contextual properties

LTL(R)

LTL is sufficient for deterministic processes
LTL(R) for real valued constraints on species concentrations

Guarantee operator from spatial logic
φ . ψ

P |= φ . ψ ⇐⇒ ∀Q.Q |= φ =⇒ P||Q |= ψ

Context introduction operator:
Q . ψ

P |= Q . ψ ⇐⇒ Q||P |= ψ

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 10 / 27

A logic for cπ

We have a model with some dynamic behaviour. Now we wish to classify
this behaviour:

Requirements?

Temporal logic
Real valued constraints
Contextual properties

LTL(R)

LTL is sufficient for deterministic processes
LTL(R) for real valued constraints on species concentrations

Guarantee operator from spatial logic
φ . ψ

P |= φ . ψ ⇐⇒ ∀Q.Q |= φ =⇒ P||Q |= ψ

Context introduction operator:
Q . ψ

P |= Q . ψ ⇐⇒ Q||P |= ψ

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 10 / 27

A logic for cπ

We have a model with some dynamic behaviour. Now we wish to classify
this behaviour:

Requirements?

Temporal logic
Real valued constraints
Contextual properties

LTL(R)

LTL is sufficient for deterministic processes
LTL(R) for real valued constraints on species concentrations

Guarantee operator from spatial logic
φ . ψ

P |= φ . ψ ⇐⇒ ∀Q.Q |= φ =⇒ P||Q |= ψ

Context introduction operator:
Q . ψ

P |= Q . ψ ⇐⇒ Q||P |= ψ

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 10 / 27

Logic syntax

A logic of behaviour in context:

(Formula) φ, ψ ::= Atom | φ ∧ ψ | φ ∨ ψ | φ⇒ ψ | ¬φ |
φUtψ | Ftφ | Gtφ | Q . φ

Atom ::= > | ⊥ | Val BOp Val

Val ::= v ∈ R | [A] | Val AOp Val

BOp ::= > | < | ≥ | ≤
AOp ::= + | − | × | ÷

Where t is a sub-interval of [0,∞) ∈ R.

Abbreviations U, F, G denote U[0,∞), F[0,∞), G[0,∞) respectively

and Ux , Fx , Gx denote U[0,x], F[0,x], G[0,x] respectively.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 11 / 27

Logic examples

F([A] ≥ c)

Eventually [A] ≥ c .

G([A] > 0)

We always have some A.

F24([A] > 0)

Within 24 we have some A.

G[10,15]([A] ≤ 5)

Between times 10 and 15 we always have [A] ≤ 5.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 12 / 27

Logic examples

Q . F([A] ≥ c)

If we introduce Q then eventually [A] ≥ c .

Q . F([A] ≥ c) ∧ G([A] < c)

If we introduce Q then [A] rises above c , whereas without Q it doesn’t.

F(Q . F([A] < c))

If we introduce Q at some point in time then [A] is eventually below c .

G[0,5](Q . F10([A] ≥ c))

If we introduce Q at any time between 0 and 5 then within 10 we get
at least c of A.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 13 / 27

Logic semantics

For P, a cπ process:

P � Atom ⇐⇒ Atom is a property of P
P � φ ∧ ψ ⇐⇒ P � φ and P � ψ
P � ¬φ ⇐⇒ P 2 φ
P � φU[t0,tn]ψ ⇐⇒ ∃t0 ≤ t ′ ≤ tn.

(
(Pt′ � ψ) ∧ (∀t0 ≤ t ′′ < t ′.Pt′′ � φ)

)
P � Q . φ ⇐⇒ (Q ‖ P) � φ

Pt is the process reached from process P after time t.

Q is a cπ process with any new global affinity network.

Ftφ ≡ >Utφ

Gtφ ≡ ¬Ft¬φ

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 14 / 27

Model checking

A numerical ODE solver gives us a Trace of the form:

(t0, ~c0), (t1, ~c1), . . .

A naive model checking algorithm is then easily expressed as a
functional program:

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 15 / 27

Naive model checker

check :: Trace 7→ Formula 7→ Bool

check (t:ts) (atom) = valid atom t

check (t:ts) (φ ∧ ψ) = (check (t:ts) φ) AND (check (t:ts) ψ)
check (t:ts) (φ ∨ ψ) = (check (t:ts) φ) OR (check (t:ts) ψ)
check (t:ts) (¬φ) = NOT(check (t:ts) φ)

check (t:ts) (φU[t0,tn]ψ) = if (t< t0) then check ts φU[t0,tn]ψ
else (t ≤ tn) AND ((check (t:ts) ψ) OR

((check (t:ts) φ) AND (check (ts) (φU[t0,tn]ψ)))

check (t:ts) (Q . φ) = check (solve (compose Q (proc (t:ts))))) φ

solve :: Process 7→ Trace

compose :: Process 7→ Process 7→ Process

proc :: Trace 7→ Process

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 16 / 27

Improved model checking

The naive algorithm has complexity O(nf) for trace length n and
depth f of nested temporal operators.

We repeatedly re-compute sub-formulae along the trace,
e.g. in G(Fφ) if φ isn’t true until the end of the trace we have cost n2.

To improve on this we can make use of the dynamic programming
approach used in:

Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.
Machine learning biochemical networks from temporal logic properties.
Transactions on Computational Systems Biology VI, 2006, pp. 68–94.

where we traverse the trace only once, evaluating all sub-formulae
simultaneously.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 17 / 27

Dynamic programming algorithm

1 By post-order depth-first traversal of the formula we obtain
sub-formulae ordered by dependency.

2 Reverse the ordering of the trace.

3 We traverse the reversed trace once, labelling each time-point with
each sub-formula in order if it holds, according to the following rules:

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 18 / 27

Dynamic programming algorithm

An atomic proposition holds if its constraint is satisfied.

φ ∧ ψ holds if the time-point is already labelled with both φ and ψ.

¬φ holds if the time-point is not already labelled with φ.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 19 / 27

Dynamic programming algorithm

φU[t0,tn]ψ holds if:

either the time is ≤ tn and:

either the time-point is already labelled with ψ
or it is already labelled with φ and the previous time point was labelled
with φU[t0,tn]ψ.

or the time is < t0 and the previous time point is labelled
with φU[t0,tn]ψ.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 20 / 27

Dynamic programming algorithm

Q . φ holds if the following procedure returns true:
1 find the cπ process Π of this time point and find Q||Π,
2 solve Q||Π and apply the algorithm to this new trace and φ.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 21 / 27

Hybrid algorithm

The dynamic programming algorithm avoids unnecessary
re-computation.

However we lose the ability to short-circuit the checking, e.g. stop
when we find a witness for Fφ.

By using a hybrid of the two algorithms we can have the best of both.

The naive algorithm can be restructured as:

an outer recursion over the trace
and an inner recursion over the sub-formulae.

Implementation in Haskell exploits any potential laziness and only
computes over as much of the trace as we need.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 22 / 27

Calls to the solver

By far the greatest computational cost comes from solving ODEs.

The key to efficient model checking is reducing the number of calls
we have to make to the solver.

Consider G(Q . φ) – we must compute a new trace introducing Q at
every time point.

Thankfully this is embarrassingly parallel.

Context introduction itself doesn’t increase complexity, as we can
re-write, e.g.:

(Q . φ) ∧ (Q . ψ)→ Q . (φ ∧ ψ)
Q . (Q ′ . φ)→ (Q||Q ′) . φ

We have O(nd) where d is the depth of temporal operators separated
by context introductions – G(Q . (Gφ)) has O(n2)

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 23 / 27

Limitations

We assume that the ODE solver gives us:

a trace over sufficient time to verify the formula,
a sufficiently accurate trace to verify the formula.

The first condition we can satisfy as our temporal modalities specify
the times over which we need to check (assuming a closed interval).

The second condition is harder – a comment about that later.

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 24 / 27

Tools

cπ workbench – implementation in Haskell

cπ interactive interpreter

species transition system exploration

ODE output

ODE solvers

internal GSL solvers: explicit (RKf45) / implicit (BSimp)
external: interface to GNU Octave for LSODE
Jacobian computed symbolically by the tool.

graph plotting

logic and model checker (various algorithms)

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 25 / 27

Future work

Formula rewriting LTL algorithms (Rosu & Havelund)

Reduce calls to the numerical solver:

solver is the bottleneck
formula rewriting
can some class of formulae be solved symbolically?

Parallelising calls to the solver.

Counterexample generation.

Continued work on tool support / (G)UI.

How can we assume the trace is sufficient?

exact real ODE solvers? (Edalat & Krznaric)

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 26 / 27

Fin

Acknowledgements:

Ian Stark (supervisor)
Marek Kwiatkowski (cπ)

Bibliography:

Kwiatkowski, M., & Stark, I.
The continuous π-calculus: A process algebra for biochemical modelling.
In Proc. Computational Methods in Systems Biology ’08, LNCS 5307,
pp.103122. Springer-Verlag, 2008.

Kwiatkowski, M.
A formal computational framework for the study of molecular evolution
Ph.D. Thesis, University of Edinburgh, 2010.

Kwiatkowski, M., & Stark, I.
On Executable Models of Molecular Evolution.
In Proc. WCSB’11, pp.105-108, 2011

Banks & Stark (LFCS, Edinburgh) Behaviour in context July 2012 27 / 27

